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IRREDUCIBILITY TESTING OVER LOCAL FIELDS 

P. G. WALSH 

ABSTRACT. The purpose of this paper is to describe a method to determine 
whether a bivariate polynomial with rational coefficients is irreducible when 
regarded as an element in Q((x))[y], the ring of polynomials with coeffi- 
cients from the field of Laurent series in x with rational coefficients. This 
is achieved by computing certain associated Puiseux expansions, and as a re- 
sult, a polynomial-time complexity bound for the number of bit operations 
required to perform this irreducibility test is computed. 

1. INTRODUCTION 

Factoring polynomials and testing polynomials for irreducibility is a fundamental 
problem in algorithmic mathematics. In [15], it was proved that factoring univariate 
polynomials with rational coefficients has polynomial-time complexity. This work 
was generalized to multivariate polynomials in [14], and to univariate polynomials 
with algebraic coefficients in [12] and [13]. In [4], Chistov proved the existence 
of polynomial-time complexity bounds for factoring polynomials with coefficients 
from local fields, such as Qp, the field of p-adic rationals, and Fp((x)), the field 
of formal Laurent series with coefficients from the finite field with p elements. For 
more on the recent history of this subject the reader is referred to the excellent 
survey papers [8] and [9]. 

The purpose of this paper is to describe a method to determine if a polynomial F 
in Q [x, y] is irreducible when regarded as a polynomial in Q((x)) [y], where Q ((x)) 
denotes the field of formal Laurent series in the variable x with rational coefficients 
and the usual rules of multiplication and addition. The method described here is 
based on the computation of the singular part of the Puiseux expansions at x = 0 
of the algebraic function y defined by the equation F(x, y) = 0. By applying the 
recent result proved in [21], we show that the method described in this paper has a 
polynomial-time complexity bound for the number of bit operations. We will also 
prove the existence of a similar complexity bound for determining the irreducibility 
of F in the ring Q((x)) [y], where Q denotes an algebraic closure of Q. It will be the 
subject of future work to extend the results obtained here by developing a method 
to factor polynomials in Q((x)) [y] and Q((x)) [y]. 

It is worth noting that by applying the results here to a transformation of F(x, y) 
of the form x' = x + a, a E Q, one could prove a similar result with Q((x)) replaced 
by Q((x - a)). 
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In what follows we let F E Q[x, y] be of degree m in x and n in y. Let denom(F) 
denote the least positive integer such that denom(F) . F has integer coefficients, 
then the height of F, denoted by ht(F) is the maximum of the absolute values 
of the coefficients of denom(F) * F. Let discy(F) denote the discriminant of F, 
where F is regarded as a polynomial in y. For our main result we will assume 
that this discriminant is nonzero, which of course means that the roots of F in 
any algebraic closure of Q(x) are distinct, and equivalent to the condition that the 
greatest common divisor of F and the derivative of F with respect to y is 1. 

By a bit operation we will always mean the addition or multiplication of two bits. 
The complexity of algorithms in this paper will be measured in bit operations, 
and we appeal to [10, Theorem A, p. 260], which states that for any E > 0 the 
multiplication of two k-bit integers requires O(kl+') bit operations. In [21] it was 
shown that the singular part of an algebraic function can be computed in 

(1) T(m, n, h, e) := O(n32+em4+, log2+e (h)) 

bit operations. We discuss this in more detail in Theorem A (in Section 4), but 
state our results in terms of this quantity. 

Theorem 1. Let F be as above. Given ? > 0, determining whether F is irreducible 
in Q( (x)) [y] can be accomplished in 

O(nri T(nm, n, h, E)) 

bit operations. 

The reader may be somewhat alarmed by the large exponent of n in this result. 
This is a direct result of the large exponents which appear in the complexity bounds 
in [15] and [13]. Any improvement on the complexity of reducing lattice bases will 
yield an improvement to Theorem 1. 

Abhyankar [1] has given an interesting criterion for a polynomial F E K[x, y] 
to be irreducible in K((x)) [y], where K is algebralcally closed and of characteristic 
zero. Theorem 1 can be thought of as a rational version of Abhyankar's result, 
although it would be interesting to remove the restriction of algebraic closedness 
from Abhyankar's method and thereby obtain a true rational version of his result. 

Theorem 1 has application to diophantine analysis. In [19] the author computed 
upper bounds to integer solutions of diophantine equations of the form F(x, y) = 0, 
where F is assumed to be irreducible in Q[x, y] but reducible as a polynomial in 
Q((x-1))[y]. Polynomials which satisfy this condition are referred to as satisfying 
Runge's Condition. From Theorem 1 and the main result of [14], one can easily 
deduce the following. 

Corollary 1. There is a polynomial-time algorithm to decide if a polynomial sat- 
isfies Runge's Condition. 

2. NOTATION 

A considerable amount of notation will be required in this paper. Some of it is 
given below, while more will be introduced in surcceeding sections. 

By Q, Z, Q, and C we mean the field of rational numbers, the rational integers, 
an algebraic closure of Q, and the field of complex numbers, respectively. 

Let a denote an algebraic number defined by the polynomial 

P(x) = adxd d+**+ao, ad O O, 
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where each ai E Z, and gcd(ai, . .. , ad) = 1, that is P(a) = 0, and no polynomial of 
degree less than d has a as a root. Then P,(x) = P(x) will be used to denote the 
defining polynomial for a, deg P = deg(a) = d is the degree of a, lc(a) = ad is the 
leading coefficient of P,(x), and we define ii to be the algebraic integer lc(a) * a. 
Also, we define ht(a) to be the height of a, which is the maximum of the absolute 
values of the coefficients of P,c(x). 

Assume that a = a('), Cl(2). .. at(d) are the (necessarily distinct) roots of P,(x). 
Then they are referred to as the algebraic conjugates of a, and there are d embed- 
dings Ci, 02, ... , cOd of the field extension Q(a) generated by a into Q such that 
o,i (a) = a(i) for 1 < i < d. 

Finally, given a field extension K of finite degree over Q, and a E K such that 
K E Q(a), then a is said to be primitive. 

3. PRELIMINARY RESULTS ON PUISEUX EXPANSIONS 

Let F(x,y) E Q[x,y], and write F as 

(2) F(x, y) = An (x)yn + An_1 (x)yn-1 + * ** + Ao(x), An 7# 0 

For a positive integer e let xl/e denote a formal eth root of x. If discy(F) is nonzero, 
that is, squarefree when regarded as a polynomial in y in Q [x, y], then Puiseux's 
theorem (for example see [2], [16], or [18]) asserts the existence of n distinct series 

00 

(3) yi(x) = E aki (x1/ei)k (1 < i n), 
k=fi 

with ei, fi E Z, ei > 0, and ak,i E Q such that 
n 

(4) F(x, y) =An (x) tI(Y-Yi (x))- 
i=l 

For i = 1, ... , n, yi(x) is called a Puiseux expansion at x = 0 of the algebraic 
function y defined by F(x, y) = 0, and the positive integer ei is the ramification 
index of the expansion yi (x). For each i = 1,... , n, the ramification index ei is 
defined to be minimal, in the sense that for any divisor d of ei there is an index k 
with ak,i :7 0 such that d does not divide k. 

In what follows we let 
00 

(5) y(x) = Zak (x /e)k 
k=f 

denote one of the n expansions described above. 
Let ?e denote the primitive eth root of unity. The branch of Puiseux expansions 

containing y(x) is the set 

(6) B(y(x)) = {ak (ex - 

Note that the set of all n expansions in (3) is partitioned into branches, with 
each expansion in a particular branch having the same ramification index, and the 
number of expansions in a particular branch being equal to the ramification index 
of each expansion in that branch. 
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Let K = Q(af, af+1,... ), then it is evident that [K: Q] < oo. Let s = [K: Q], 
and let ul, U2, ... , a, denote the embeddings of K into Q. The conjugacy class of 
expansions containing y(x) is the set 

(7) C(y(x)) = { (ak) /e)k; 1<j<s,O<i<e-1}. 

The set of all n expansions in (3) is partitioned into conjugacy classes, and in 
fact one can easily see that C(y(x)) is the set of all expansions appearing in one 
of the branches B(y,(x)), where y,(x) = Z2??f a(ak)xk/e. Furthermore, it is 
straightforward to check that distinct branches are disjoint, and that each branch 
of the form B(y,(x)) contains precisely e expansions. Therefore the conjugacy class 
of y(x), C(y(x)), contains es1 elements for some positive integer sl. 

The following result shows that our main task is to compute the order of C(y(x)). 

Lemma 1. Assume that discy(F) 7& 0, and let Yl (x), y2(x), . ., yesi (x) denote the 
es1 distinct Puiseux expansions in C(y(x)). Then Hl=X (y - yi(x)) is irreducible in 
Q((x))[y]. Also, if yi(x), ... , ye(x) denote the Puiseux expansions in B(y(x)), then 

= - (y-yi(x)) is irreduccible in Q((x))[y]. 

Proof. The product over C(y(x)) is the norm from Q((x1/e)) to Q((x)), extended to 
polynomials, of (y-yi(x)). Since (y-yi(x)) is evidently irreducible in Q((x1/e))[y], 

it follows from [17, Theorem 2.1] that this product is a power of an irreducible factor 
in Q((x)) [y]. Since discy (F) 7& 0, the n Puiseux expansions of the algebraic function 
y are distinct. Therefore the product over C(y(x)) must be irreducible. The second 
part of the lemma follows by the same argument with Q((x)) replaced by Q((x)). 

By Lemma 1 we see that the irreducible factor of F(x,y) in Q((x))[y] with 
(y - y(x)) as a factor has degree es1, where s, is.the number of distinct branches of 
expansions in the conjugacy class C(y(x)). Our goal now is to describe the number 
S1. 

Definition. Let oa be an embedding of K into Q. We say that a is redundant 
relative to y(x) (or simply redundant) if the expansion y,(X) = Z2'-f cr(ak)xk/e is 

in the branch B(y(x)). Equivalently, oa is redundant if there is a positive integer t 
such that ca(ak) = ak(,ek for all k> f. 

Lemma-2. Let so denote the number of redundant embeddings relative to y(x), let 
e denote the ramification index of y(x), and let s = [K: Q]. Then C(y(x)) contains 
precisely es/so distinct elements. 

Proof. We let 1K denote the identity map on K. Let a and -y denote embed- 
dings of K into Q. We will write a- -y if the branch containing the expansion 
Z? c(ak)X7k also contains ZEc=1 (ak)xYk. It is easy to check that this is an 
equivalence relation on the set of embeddings. We will prove Lemma 2 by showing 
that each equivalence class of embeddings E(o-) = {1y;-y -a} contains precisely so 
elements. To show this we prove that for each a: K -Q 

(8) E(cr) = {fuit;td E E(1K)}, 

where a, is some fixed extension of a to K (ce), where (e is some primitive eth root 
of unity. 
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Let oa K -Q, and let a0 be some fixed extension of of to K((4e) defined by 
ail(() = e. Note that i must also be a primitive eth root of unity, and hence 
gcd(e,j) = 1. 

Let C E E(1K) and let i be the integer with 0 < i < e- 1 such that V (ak) = ak(eik 

for all k > f. Then 

J1%9(ak) = J (ak(e) = o(ak )e(i 

for all k > f, and so oit0 E E(a). Now let o1 1 denote the inverse of 0i, 

Ol .: al (K) K, 

and let j1 denote the inverse of j(mode). Then 0iG1e) = . For -y E E(of) put 
0 = oj1 y. Because -y E E(of), there is an integer ji such that -y(ak) = o(ak)(eiQk 

for all k > f. Therefore, t9(ak) = o1' y(ak) = l(o(ak)Qk) - ak&i O ik for all 
k > f, and hence -y = o1t0. Thus, we have that (8) holds. 

To see that all o1t9 are distinct, assume on the contrary that oa1t (ak) = J1t02(ak) 

for all k > f, where ~19(ak) - akea1 k for all k > f and 102(ak) = ak&ie2k for all k> f. 
It follows that $ji k - $j2k for all k with ak #7 0. Therefore jjl k jj2k(mod e) 
for all k with ak 5 0. By the minimality condition of the ramification index e, it 
follows that jij jj2(mod e). But gcd(e, j) = 1, hence ii j2(mod e), and hence 
01= =02. This completes the proof of Lemma 2. 

4. THE SINGULAR PART OF Y(X) 

We will henceforth write y(x) in the form 
00 

(9) y(x) = akxYk, 

k=1 

where ak 5$ 0 for all k > 1, ak = fk/ek with gcd(fk, ek) = 1 for those k with fk $ 0, 
and "Yk+l > "Yk and ek > 0 for all k > 1. We will assume throughout this section 
that fi > 0, for it will be seen later that this will cause no restriction. 

Definition. The singular part of y(x) is the minimal initial partial sum 
T 

(10) YT(X) = E akXYk (ak $ 0), 
k=1 

such that the sum of the first T terms of any other Puiseux expansion of y does 
not equal yl'(x). 

The following result is critical to our algorithm. It shows that the singular part 
of y(x) contains much of the necessary information about y(x). 

Lemma 3. Let all of the notation be as above. Then 

1. K = Q(al, a2, ..., aT) and hence s = [Q(al, ,aT) Q]- 

2. e=lcm(el,e2,***,eT). 

3. T < 4mn2. 

Proof. 1. This is an immediate consequence of [11, Theorems 6.1 and 5.5], and 
also follows from [7, Theorem 4.5]. 

2. This is in [11, Theorem 6.1], and was rediscovered in [6]. 
3. This follows easily from [11, Corollary 6.1]. 
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In [21], the author proved the following result which is the basis for the results 
proved here. 

Theorem A. Let F be as in (2), and assume that disc(F) is nonzero, and that 
An(O) 5 0. Let m, n, and h denote the degree of F in x, the degree of F in y, 
and the height of F, respectively. Then for any ? > 0 the singular part of one 
Puiseux expansion at x = 0 of the algebraic function y defined by F(x, y) = 0 can 
be computed in O(n32+em4+e log2+e (h)) bit operations. 

Let T(m, n, h, E) be as in (1). By part 2 of Lemma 3 and Theorem A, we have 
the following. 

Theorem 2. Let F E Q[x, y] be of degree m in x, n in y, of height h. Then for E > 
O, deciding if F is irreducible in Q((x))[y] can be accomplished in O(T(nm, n, h, E)) 
bit operations. 

Proof. We may assume that discy F :7 0; otherwise F would have multiple roots for 
y, and hence would be reducible in Q ((x)) [y]. This condition can easily be checked 
within the number of bit operations given in the statement of the theorem. Let F 
be as in (2), then replacing F(x, y) by F(x, y) = x"F(x, yx-A), for suitably chosen 
nonnegative integers ,a and A (for example = mn - ordx An and A = m will do) 
we can assume that the leading coefficient of F does not vanish at x = 0, and hence 
that all of the Puiseux expansions of the algebraic function y defined by F(x, y) = 0 
have no terms with negative exponents. Moreover, by this choice of ,u and A, the 
resulting polynomial will have degree in x no greater than (n + 1)m. Thus, in order 
to determine if F is irreducible in Q((x)) [y], it suffices to compute the singular part 
of one Puiseux expansion and compare the ramification index of that expansion to 
the degree in y of F. The result now follows from Theorem A. 

By Lemma 3, in order to compute the quantities s and e of Lemma 2, it suffices 
to compute the singular part of the Puiseux expansion y(x). It remains to describe 
a method to compute the quantity so, the number of redundant embeddings relative 
to y(x). 

5. THE COMPUTATION OF So 

In this section we will describe a method to compute the value so. We will 
require notation from [21], wherein an algorithm to compute the singular part of 
y(x) is described. 

Let K = Q(al,a2,...), which by Lemma 3 is equal to Q(a,,a2.... aT). As 
before, let s = [K: Q], and o,,.. ., oa the embeddings of K into Q. Let S denote 
the set of redundant embeddings of K into Q relative to y(x), so that so = ISI. 
For 1 < i < T, define ai = lc(Pa%) * ai, and let t1,t2,. ... ,tT be integers in the range 
O < ti < 2 with the property that 

'}i = al + t2U72 + ** *+ tiai 

denotes the primitive algebraic integer, with minimal polynomial P,, (x), computed 
in [21, Algorithm 3.1], with the property that Q(aj,...,aj) = Q(ai). Also, for 
1 < i < T, let Pi,i(x) denote the polynomial of degree at most deg(P,) - 1, with 
rational coefficients, computed in [21, Algorithm 3.1] which satisfies ai = Pi,i(ai) 

For 1 < i < T and 0 < t < e - 1 define 

t=a +t 2 e +i ai,t tfI + tU2(f+ +tfi C 
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where, in (9), 'Yj = fi/ei is a reduced fraction and (e, is an ejth root of unity for 
1 < j < i. For 1 < i < T and O < t < e-1, Pcli,(x) will denote the minimal 
polynomial of aij. 

Lemma 4. The number so is precisely the number of values of t with 0 < t < e - 1 
such that Poti t(x) = P,, (x) and ai(,tfi = Pj,j(ai,t) for all i in the range 1 < i < T. 

Proof. Let of be a redundant embedding, then there is an integer t such that a(ai) = 

ai(thfi for all i > 1. From the way in which ai is defined, it follows that o,(ai) = aij 
for all i in the range 1 < i < T, which is the same as P,,,,t(x) = P,, (x) for all 
1 < i < T. Also, from the definition of the polynomial Pi,i(x), 

ai(,tfi = of(ai) = o(Pi,j(a')) = Pj,j(of(a')) = Pi'i(0zi,+) 

for all i in the range 1 < i < T. 
It suffices now to show that if t is an integer for which the two conditions in the 

statement of Lemma 4 hold, then there is an embedding of of K into Q for which 
o(ai) = ai4tfi for all i > 1. By the definition of T, it is sufficient to show that there 
is an embedding of for which o(ai) = aieifi for all 1 < i < T. This is accomplished 
by induction on i = 1, .. ., T. 

Let i = 1. Then since P,,, t(x) = Po,,(x), there is an embedding of of Q(a,) into 
Q for which o(al) = alt. Therefore, 

altfl = Pi,1(ci,j) = Pi,i(of(a)) = o(Pi,i(aj)) = (al), 

from which it follows that or(71) =U71(etfl. 
Let k be integer in the range 1 < k < T - 1. Assume that of is an embedding 

of Q(al,...,ak) into Q, with the property that o(ai) = aietfi for all 1 < i < 
k. Since we know that Pclk+lt(x) = Pc'k+l (x), there is another embedding a0 of 
Q(al, . ,ak+1) into Q such that 01(Cfk+l) = C&k+l,t. Therefore, 

ak+1 (efk+l1 = Pk+l,k+l (k+1,t) = Pk+l,k+l (J1 (Ozk+l)) = cY (ak+1), 

from which it follows that ak?1j+l = 0i(ak+?). Thus, 

a}k+1,t = aitfl + + tk+lak+ltfk+ 

= 0(al+ + tkdk) + c0l(tk+lak+l) 

and 

Ctk+l,t = c0l(Ck+l) = 01(a, + * + tk+lak+l) 

= cY1 (Oak) + cY (tk+lak+1)- 

Therefore, 0(ak) = 01(ak) and it follows that o1(ak+l) = ak+l(ek+l. But since 
of and ol agree on Q(ak) = Q(aj,...,ak), it follows that oi(ai) = aietfi for all 
1 < i < k + 1. 

6. PROOF OF THEOREM 1 

As in the proof of Theorem 2 we may assume that discy F $ 0. Also, by a 
transformation of F described in the proof of Theorem 2 we may assume that the 
Puiseux expansions of the algebraic function y at x = 0 have no terms with negative 
exponents. In this case F is being replaced by another polynomial, say F, whose 
height and degree in y is the same, but whose degree in x is bounded by (n + l)m. 
Moreover, it is a simple exercise to see that F is irreducible if and only if F is also. 
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In order to decide if F is irreducible in Q((x)) [y] we need to compute the numbers 
e, s, and so which are associated to one of the Puiseux expansions, say y(x), of y, 
the algebraic function defined by F(x, y) = 0, and check whether or not n = es/so. 
By Lemma 3, the values e and s are computed once the singular part of y(x) is 
computed, and so the only difficulty now remains in the computation of so. This is 
accomplished by determining which values of t, with 0 < t < e -1, have the property 
that there is an embedding a of Q(a,, . .. , aT) into Q of the form a(ai) = aj(,fI for 
all i = 1,... , T. By Lemma 4, this can be accomplished by deciding which values of 
t, with 0 < t < e-1, have the property that P,,, t(x) = Pi (x) and ai eifi = P.,i(ai,t) 
for all i = 1,...,T. For each fixed i, with 1 < i < T, this reduces to simply 
computing the polynomial P,,, (x), in the course of computing the singular part 
of the Puiseux expansion yi(x) = aietfixfi/ei, in the same manner that the 
polynomial P,, (x) is computed during the computation of the singular part of y(x), 
and computing the representation of aietfi in the field Q(ai,t) in the same way that 
the representation of ai in Q(ai) is obtained during the computation of the singular 
part of y(x). In other words, it suffices to compute all e Puiseux expansions in the 
branch B(y(x)). Thus the total work is no more than e times the work to compute 
the singular part of the expansion y(x). Theorem 1 now follows from Theorem A, 
the bounds for the degrees and height of F given above, and the fact that e < n. 
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